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ABSTRACT 
A glass house experiment was conducted to with level of nickel control (0.0001mM Ni) 
while other two lots were supplied with excess nickel (Ni) at 0.1mM and 0.5mM using 
cauliflower (Brassica oleracea L. var. botrytis) cv. Snowball was grown in refined sand with 
complete nutrient solution for 79 days. At d 80 plants were separated into three lots. 
Excess nickel caused oxidative stress indicate by decrease in enzyme activities of catalase, 
peroxidase and acid phosphatase in leaves. The decreased activity of catalase may 
suggest interference of excess nickel in iron metabolism of plants. The appearance of 
metal specific toxicity is a likely result of damage predominantly due to enhanced 
generation of reactive oxygen species (ROS) at higher (0.5mM) nickel supply. Increase in Ni 
supply increased nickel concentration in all parts of cauliflower whereas the concentration 
of phosphorus (P), sulphur (S), iron (Fe) and manganese (Mn), Zinc (Zn) and copper (Cu) 
decreased significantly. 
Keywords: Nickel, Manganese (Mn), Copper (Cu) and Iron (Fe). 
 

INTRODUCTION                             
The accumulation of heavy metals in several plant species, of agriculture importance has 
been reported at several locations (Gragor et al. 1991) growing near industrial areas. Heavy 

metal stress may stimulate the formation of free radicals and reactive oxygen species (ROS) 

such as .O2 (super oxide radical), .OH (hyroxyl radical), H2O2 (hydrogen peroxide) and 
1

O2 
(singlet oxygen) in several plants (Alscher et al., 1997; Foyer et al.1997). Nickel salts are 
considered to be an occupational hazard and reported to produce undesirable effects 
and/or carcinogenicity in humans and animals (Obone et al., 1999). Nickel exposure causes 
formation of free radicals in various tissues in both human and animals which lead to 
various modifications to DNA bases, enhanced lipid peroxidation, and altered calcium and 
sulphhydryl homeostasis (Das et al., 2008).  
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During the period of metal treatment, plants develop different resistance mechanisms to 
avoid or tolerate metal stress, including the changes of lipid composition, the profiles of 
isozymes and enzyme activity, sugar or amino acid and the level of soluble proteins and 
gene expressions. These adaptations entail qualitative and/or quantitative metabolic 
changes that often provide a competitive advantage, and affect plant survival 
(Schützendübel and Polle 2002). Therefore, plant cells contain protective and repair systems 
that, under normal circumstances, minimize the occurrence of oxidative damage. Excess 
supply of nickel to plants also accelerates generation of reactive oxygen species (ROS) 
resulting into oxidative stress (Baccouch et al., 1998). The toxicity associated with nickel (II) 
is mainly due to generation of reactive oxygen species (ROS) with subsequent oxidative 
deterioration of biological macromolecules. Nickel can generate free radicals (FR) directly 
from molecular oxygen in a two-step process to produce superoxide anion and in 
continued process, produce highly toxic hydroxyl radical. The Ni-induced growth inhibition 
has been ascribed to down-regulation of protein synthesis and activities of some key 
enzymes responsible for mobilization of food reserves taking place during seed germination 
(Bishnoi et al., 1993). Several redox and non-redox metals like Fe (Fang and Kao, 2000), Cu 
(Teisseire and Guy, 2000), Zn (Rao and Sresty, 2000) and Cd (Romero- Puertas et al., 1999) 

are known to cause oxidative stress as indicated by lipid peroxidation and H2O2 
accumulation in the cells (Schutzendube and Polle, 2002). 
 

MATERIALS AND METHODS 
Plant material and Growth Condition 
Cauliflower (Brassica oleracea L. var. botrytis) cv. Snowball was grown in washed sand under 
controlled conditions in a glass house (Agarwala and Sharma 1976). Plants were grown in 
polyethylene containers of 10L capacity having a central drainage hole, covered with an 
inverted watch glass whose rim was lined with glass wool. The composition of the base 
nutrient solution was 4 mM KNO3,  4mM Ca(NO3)2, 2mM MgSO4, 1.5mM NaH2PO4, 
100mM Fe EDTA, 10 mM MnSO4,  30mM H3BO3,1mM CuSO4, 1mM ZnSO4, 0.2mM 
Na2MoO4, 0.1mM CoSO4 ,0.1mM NiSO4 and 0.1mM NaCl. 
One lot was allowed to grow as such and was treated as control. In other two lots nickel was 
superimposed at 0.1 and 0.5 mM Ni as NiSO4. All the experiment was were carried out in 
triplicate. 
Visual Observation and Zn, Fe, Cu, Mn Concentration 
After 5 days, when plants showed depression in growth besides periodical record of 
visible symptoms,. at d 90 and 110 (10 and 30 days after metal supply) plants were sampled 
for tissue estimation of phosphorous (Wallace 1951) and sulphur (Chesnin and Yein 1951) 
colorimetrically while of Fe, Mn, Zn and Cu were estimated by atomic absorption 
spectrophotometerAAS-4141. The concentration of iron, zinc, copper, manganese, 
phosphorous and sulphur was estimated in oven dried plant samples after di -acid digestion 
(HNO3:HClO4, 10:1) (Piper, 1942) by atomic absorption spectrophotometer. 
Enzyme Extraction and Assay 
Fourth fully expanded fresh leaf tissue (2.5 gm) was homogeniged in 10.0 ml chilled 50 
mmM potassium phosphate buffer (pH 7.0) containing 0.5% (w/v) insoluble polyvinyl 
polypyrolidone and 1.0 mm phenyl methylsulfonyl floride in a chilled pestle and mortar 
kept in ice bath.  
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The homogenate was filtered through two muslin cloth and centrifuged at 20,000x g for 
10 min. The supernatant was stored at 2ºC and used for enzyme assays wiin 4 hrs. 
 
Assay of Antioxidative Enzymes 
Catalase (CAT) and peroxidase (POD) were assayed in fresh leaf tissue extracts prepared by 
homogenizing samples in ice-cold glass distilled water (1:10) with a cold pestle and mortar 

at 40 C. The activity of CAT was assayed as described by Euler and Josephson (1927) in a 

reaction mixture (10 ml, standardized against 0.1 N KMnO4) containing 500 μM of H2O2 

and 1.0 mmol of potassium phosphate buffer (pH 7.0) was stabilized at 250C. The reaction 

was allowed to proceed for 5 min. and was stopped by adding 2.0 ml of 2N H2SO4. The 

final reaction mixture was titrated against 0.1 N KMnO4. The activity of POD was assayed by 
the method of Luck (1963). The reaction mixture (10 ml) contained 5.0 ml of 0.1 M of 

potassium phosphate buffer (pH 7.0), 1.0 ml of 0.01% H2O2, 1.0 ml of 0.5% p-

phenyldiamine. The reaction was started by adding 1.0 ml suitably diluted enzyme extract 

and allowed to proceed for 5.0 min. The reaction was stopped by adding 2.0 ml of 5N 

H2SO4 and the colour intensity was measured at 485 nm. 
Acid phosphatase activity was assayed by the method of Schmidt (1955). The reaction 
mixture contained 0.5 ml 0.1M sodium acetate buffer pH 5.0 and 0.4 ml suitably diluted 
enzyme extract in a centrifuge tube. The reaction was initiated by the addition of 0.1ml. 
0.1M sodium β-glycerophosphate at 30 oC and was stopped exactly after 20 min by adding 
1 ml 10% (w/v) trichloroacetic acid (TCA). The corresponding blanks were run 
simultaneously with added TCA before the addition of the substrate. The contents were 
centrifuged  at  400  x  g  for  10  min  at  room  temperature. The amount of inorganic 
phosphate (Pi) liberated was estimated in a suitable aliquot of the supernatant by the 
method of Fiske and Subbarow (1925). 
 
Statistical Analysis 
All estimations made in triplicate. The data have been statistically analysed for standard 
error (± SE). 
 

RESULT 
Plant growth and Visible symptoms 
The visible symptoms of nickel toxicity appeared after d 90-95 (10-15 days of metal supply) 
showed chlorosis of young leaves. In cauliflower, the growth depression and symptoms of 
excess nickel were less marked. Except for mild general yellowing of young leaves and no 
other specific effects appears that cauliflower is quite resistant to excess nickel. This may 
also indicate that plants are divergent in their sensitivity to nickel. 
Activities of oxidative stress enzymes 
Compared to the activity of catalase in control leaves its activity decreased at 0.1 and 0.5 
mM Ni supply. 
The activity of peroxidase decreased (Fig.3) in cauliflower leaves at 0.1 and 0.5mM Ni. 
Compared to the activity of acid phophatase (Fig 3) at control its activity decreased to 0.1 
and 0.5 mM Ni. 
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Tissue Zn, Fe, Cu, P, S and Mn 
At d 100, concentration of phosphorus decreased in all parts (except roots) from the 
values of phosphorus in respective to that of control level (Table3). The concentration of 
iron decreased in all parts except roots. 
The concentration of sulphur in different part in cauliflower was decreased. The 
concentration of iron decreased in all parts except roots. 
The concentration of zinc is decrease in all part of plant at 90 and 110 growth stage. The 
concentration of copper is decreased in all part of plant at different growth stage except 
root. 
 

DISCUSSION 
The visible symptoms of nickel toxicity appeared after d 90-95(10-15 days of metal supply) 
chlorosis of young leaves (Gopal and Nautyal, 2012). The decrease in activity of catalase 
might be possible due to inhibitory role of excess heavy metals in inducing oxidative stress 
as observed previously in sunflower (Gallego et al., 1996). The decrease in catalase activity 
in cauliflower (Fig 3) similar to the report on Hyptis suaveolens L. Poit. and Helianthus 
annuus L. (Pillay et al. 1996) and Oryza sativa L (Archana et al. 2006). The decrease in 

catalase activity in turn increase the H2O2 concentration creating oxidative stress 

enhancing the inactivating of catalase preventing synthesis of new enzyme (Dat et al. 1998). 
Pandey and Pathak (2006) also noticed marked decrease at 10µM Ni supply. It might be 
possible due to higher accumulation of H2O2. The results are in contrast with the result of 

sunflower observed by Pillay et al. (1996). The decrease in acid phosphatase activity in nickel 
excess in cauliflower leaves might be due to disturbed phosphorous metabolism. This is in 
contrast with earlier report of (Pillay et al. 1996). The decrease in sulphur content in various 

parts of cauliflower is in consonance with the results on cabbage (Yang et al. ,1996) and 
cauliflower (Chatterjee and Chatterjee 2000), where excess Ni reduced the S content. The 
reduction in sulphur might be due to blockage of passage by the presence of Ni in excess 
amounts. This altered sulphur content in turn might be responsible for less available 
sulphur for different biomolecules to be utilized in various metabolic pathways as has been 
suggested for excess Ni (Gopal et al. 2001). The decrease in Mn in leaves might suggest a 
competition between them and the results are similar to those described by Taylor and 
Stadt, 1990; Lou et al.1991) These results are not in support with the observation of Piccini 
and Malavolta (1992) in bean, where no change was found in the concentration of Mn. Yang 
et al., (1996) have reported a decrease in Mn concentration in excess nickel application in 
maize. It  appears  that  translocation  of  iron  was  disturbed  in  excess  nickel  supply.  The 
disturbances in phosphorous and iron content due to excess Ni affect carbohydrate and 
nitrogen metabolism and this might be responsible for depressed growth and lowered 
biomass in excess Ni. Similar observation on lower Phosphorus content in excess Ni 
condition have been reported by Miller  et  al.,  (2000)  in  Virginia  pine  (Pinus  
verginians  Mill). The accumulation in carbohydrate fraction (Fig 2) is in consonance with 
similar results on white bean (Rauser, 1978) bush bean (Rauser and Samarkoon, 1980). 
The decrease in Mn (in cauliflower), Cu (in cauliflower) and Zn content (in all plants) in 
leaves might also suggest a competition between them and excess Ni. These results are not 
in support with the observations of Piccini and Malavolta (1992) in bean, where no 
change was found in the concentration of Mn and Zn but that of P was increased.  
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Yang et al., (1996) have reported decrease in Zn, Cu and Mn concentration in excess nickel 
condition in maize. In cabbage Fe and S decreased in excess Ni concentration by Yang et al., 
(1996). 
 

CONCLUSION 
The visible symptoms of nickel toxicity clearly indicate the inhibitory effect of excess nickel 
inhibit  cauliflower growth and development Moreover, the present study showed a nickel 
mediated free radical reaction as manifested by an increase in the activities of POD and 

decrease the activity of CAT to help in detoxifying the H2O2 produced in response to Nickel 

treatment. 
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